A Double-Stage Genetic Optimization Algorithm for Portfolio Selection
نویسندگان
چکیده
In this study, a double-stage genetic optimization algorithm is proposed for portfolio selection. In the first stage, a genetic algorithm is used to identify good quality assets in terms of asset ranking. In the second stage, investment allocation in the selected good quality assets is optimized using a genetic algorithm based on Markowitz’s theory. Through the two-stage genetic optimization process, an optimal portfolio can be determined. Experimental results reveal that the proposed double-stage genetic optimization algorithm for portfolio selection provides a very feasible and useful tool to assist the investors in planning their investment strategy and constructing their portfolio.
منابع مشابه
Using Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملOptimal Portfolio Allocation based on two Novel Risk Measures and Genetic Algorithm
The problem of optimal portfolio selection has attracted a great attention in the finance and optimization field. The future stock price should be predicted in an acceptable precision, and a suitable model and criterion for risk and the expected return of the stock portfolio should be proposed in order to solve the optimization problem. In this paper, two new criterions for the risk of stock pr...
متن کاملMulti-period project portfolio selection under risk considerations and stochastic income
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, con...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملThe project portfolio selection and scheduling problem: mathematical model and algorithms
This paper investigates the problem of selecting and scheduling a set of projects among available projects. Each project consists of several tasks and to perform each one some resource is required. The objective is to maximize total benefit. The paper constructs a mathematical formulation in form of mixed integer linear programming model. Three effective metaheuristics in form of the imperialis...
متن کامل